2,887 research outputs found

    Characterization of three spot, a mutation that disrupts germ cell migration of Drosophila melanogaster

    Get PDF
    During embryonic development, the somatic gonad precursors become populated by the primordial germ cells. While many genes have been identified, the highly regulated process of germ cell migration across the primordial midgut epithelium is not well characterized. Here, we describe three spot (tspt), a gene which interacts with tre1 during cross-epithelial migration. The tspt mutant was created in an EMS mutagenesis screen performed previously. Embryos from tspt mothers appear to exhibit restricted germ cell migration through the posterior midgut, resulting in a population of germ cells that remain associated with the endoderm through stage 16. We show that tspt is a maternally required migration gene, as well as a temperature sensitive mutant. We have identified two deletion regions that fail to complement tspt. One of the regions maps to the same region defined by recombination mapping. P-element insertions for 19 genes in and around this region were tested for germ cell phenotypes. Surprisingly, three of the nineteen exhibited germ cell defects. The Tre1 G-protein coupled receptor gene has been shown to be necessary for both programmed cell death and the migration of germ cells across the midgut. The scattershot allele of tre1 fails to complement tspt mutants, suggesting that they may be involved in the same or converging pathways during germ cell migration. Here we will describe the characterization of tspt mutants and the mapping of the tspt gene

    Design, fabrication and acoustic tests of a 36 inch (0.914 meter) statorless turbotip fan

    Get PDF
    The LF336/E is a 36 inch (0.914 meter) diameter fan designed to operate in a rotor-alone configuration. Design features required for modification of the existing LF336/A rotor-stator fan into the LF336/E statorless fan configuration are discussed. Tests of the statorless fan identified an aerodynamic performance deficiency due to inaccurate accounting of the fan exit swirl during the aerodynamic design. This performance deficiency, related to fan exit static pressure levels, produced about a 20 percent thrust loss. A study was then conducted for further evaluation of the fan exit flow fields typical of statorless fan systems. This study showed that through proper selection of fan design variables such as pressure ratio, radius ratio, and swirl distributions, performance of a statorless fan configuration could be improved with levels of thrust approaching the conventional rotor-stator fan system. Acoustic measurements were taken for the statorless fan system at both GE and NASA, and when compared to other lift fan systems, showed noise levels comparable to the quietest lift fan configuration which included rotor-stator spacing and acoustic treatment. The statorless fan system was also used to determine effects of rotor leading edge serrations on noise generations. A cascade test program identified the serration geometry based on minimum pressure losses, wake turbulence levels and noise generations

    Glycerol confined in zeolitic imidazolate frameworks: The temperature-dependent cooperativity length scale of glassy freezing

    Get PDF
    In the present work, we employ broadband dielectric spectroscopy to study the molecular dynamics of the prototypical glass former glycerol confined in two microporous zeolitic imidazolate frameworks (ZIF-8 and ZIF-11) with well-defined pore diameters of 1.16 and 1.46 nm, respectively. The spectra reveal information on the modified alpha relaxation of the confined supercooled liquid, whose temperature dependence exhibits clear deviations from the typical super-Arrhenius temperature dependence of the bulk material, depending on temperature and pore size. This allows assigning well-defined cooperativity length scales of molecular motion to certain temperatures above the glass transition. We relate these and previous results on glycerol confined in other host systems to the temperature-dependent length scale deduced from nonlinear dielectric measurements. The combined experimental data can be consistently described by a critical divergence of this correlation length as expected within theoretical approaches assuming that the glass transition is due to an underlying phase transition.Comment: 14 pages, 5 figures + Supplemental Material (4 pages, 6 figures). Final version as accepted for publicatio

    Toward a Viable Strategy for Estimating Vibrothermographic Probability of Detection

    Get PDF
    Vibrothermography is a technique for finding cracks and delaminations through infrared imaging of vibration‐induced heating. While vibrothermography has shown remarkable promise, it has been plagued by persistent questions about its reproducibility and reliability. Fundamentally, the crack heating is caused by the vibration, and therefore to understand the heating process we must first understand the vibration process. We lay out the problem and begin the first steps toward relating detectability to the local motion around a crack as well as the crack size. A particular mode, the third‐order free‐free flexural resonance, turns out to be particularly insensitive to the presence of clamping and transducer contact. When this mode is excited in a simple bar geometry the motions of the part follow theoretical calculations quite closely, and a single point laser vibrometer measurement is sufficient to evaluate the motion everywhere. Simple calculations estimate stress and strain anywhere in the bar, and these can then be related to observed crack heating

    Synoptic/planetary-scale interactions and blocking over the North Atlantic Ocean

    Get PDF
    Work was completed on the height tendency diagnoses of two extratropical cyclones that occurred upstream from the blocking event studied previously. One developed explosively over water 60 to 36 hours before the block first appeared, while the second developed explosively over the southeastern United States during the time of block formation. In both cases, both vorticity and temperature advection were consistently important forcing mechanisms. This is in contrast to the block itself, in which vorticity advection was easily the dominant forcing mechanism. Latent heat release was also significant, accounting for about 50 percent of the total height falls in the cyclone below 850 mb. Estimates of latent heat release were greatly enhanced by coupling parameterized estimates with values derived from GOES IR data using an algorithm developed by Marshall's F. R. Robertson. Among the difficulties encountered in this work was the identification of an appropriate lower boundary condition for the solution of the height tendency equation. The zero value currently used tends to yield underestimates of the lower troposphere height tendencies. To address this problem a new diagnostic technique was developed in cooperation with Dr. Peter Zwack of the University of Quebec at Montreal. Based on an equation Dr. Zwack had previously developed (the Zwack-Okossi development equation), researchers now have a relationship that is completely consistent with the height tendency equation and provides estimates of lower boundary geostrophic vorticity or height tendencies. Finally, comparison of the SAT (satellite data) and NOSAT (no satellite data) analyses is progressing well. The present focus is on both the new diagnostic technique and the SAT/NOSAT comparisons. The former is being tested on the southeastern United States cyclone case previously mentioned and compared with the height tendency diagnoses already completed. The latter are being examined for the blocking case described in the publications cited in this summary. In addition to obtaining statistics that will allow general comparison of the two analyses, it will be possible to determine whether conclusions about the dynamics of the block development are influenced by the analysis set used

    Reconstructing palaeotemperatures using leaf floras – case studies for a comparison of leaf margin analysis and the coexistence approach

    Get PDF
    AbstractIn the past the problems and advantages of the nearest-living-relative (NLR) and leaf physiognomy approaches have been repeatedly discussed and it has been demonstrated that both approaches frequently show broad agreement with each other. However, detailed comparisons of the various methods for accuracy in estimation of palaeoclimate at individual localities are still lacking. Such studies are needed before data obtained from different approaches can be integrated in palaeoclimate maps and models. Moreover, there are some indications that leaf physiognomy and NLR approaches may lead to different results. In this study we applied a physiognomic method based on leaf margin analysis and the coexistence approach, a recent variation of the NLR approach, to two Tertiary palaeofloras (Schrotzburg, Middle Miocene, south Germany; Kleinsaubernitz, Upper Oligocene, east Germany). We demonstrated that both approaches can produce reasonable and consistent results if the standard error of the leaf physiognomy palaeoclimate data is taken into account. However, our results and interpretations indicate that reconstructions based on leaf physiognomy are influenced by factors not related to climate, such as sample size and differential preservation or transport. In contrast, reconstructions for the same fossil assemblages based on the coexistence approach seem to be less affected by taphonomic variables, but may be less sensitive to minor climate changes

    Interaction of ionic liquids with noble metal surfaces: Structure formation and stability of [OMIM][TFSA] and [EMIM][TFSA] on Au(111) and Ag(111)

    Get PDF
    Principles of structure formation and adsorbate–adsorbate interactions in ionic liquid adlayers on metal surfaces were investigated in a comparative STM study on Ag(111) and Au(111) surfaces.</p

    MOTOR CONTROL PATTERNS IN ELITE SWIMMERS’ FREESTYLE STROKE DURING DRYLAND SWIMMING

    Get PDF
    The purpose of this study was to compare motor control patterns of elite freestyle swimmers when asked to swim at 100m freestyle pace using a dryland swimbench. Collegiate and masters level swimmers (n=15) whose 100m freestyle time were faster than 75% of the FINA cutoff time, performed four 10 second trials of freestyle swimming on a dryland swimbench. 3-D kinematic analysis was used to calculate displacement in the hand in the cranial-caudal, vertical, and medial-lateral directions. A 2-way repeated measures ANOVA was used to compare hand path between swimmers and within trials (n=58). Data was not statically significant, but three distinct combinations of hand paths were used to perform the 100m freestyle task on the swimbench. These hand paths differed from historical in-water data. Findings imply individual swimmers adjusted kinematics on the swimbench to accommodate for environmental constraints
    corecore